2,053 research outputs found

    Temporal Correlations and Persistence in the Kinetic Ising Model: the Role of Temperature

    Full text link
    We study the statistical properties of the sum St=0tdtσtS_t=\int_{0}^{t}dt' \sigma_{t'}, that is the difference of time spent positive or negative by the spin σt\sigma_{t}, located at a given site of a DD-dimensional Ising model evolving under Glauber dynamics from a random initial configuration. We investigate the distribution of StS_{t} and the first-passage statistics (persistence) of this quantity. We discuss successively the three regimes of high temperature (T>TcT>T_{c}), criticality (T=TcT=T_c), and low temperature (T<TcT<T_{c}). We discuss in particular the question of the temperature dependence of the persistence exponent θ\theta, as well as that of the spectrum of exponents θ(x)\theta(x), in the low temperature phase. The probability that the temporal mean St/tS_t/t was always larger than the equilibrium magnetization is found to decay as tθ12t^{-\theta-\frac12}. This yields a numerical determination of the persistence exponent θ\theta in the whole low temperature phase, in two dimensions, and above the roughening transition, in the low-temperature phase of the three-dimensional Ising model.Comment: 21 pages, 11 PostScript figures included (1 color figure

    A simple motion-planning algorithm for general robot manipulators

    Full text link

    Structural and mechanical properties of ?-irradiated Zr/Nb multilayer nanocomposites

    No full text
    Zr/Nb multilayers with periodicities of 10, 30 and 60 nm were prepared by magnetron sputtering and irradiated for prolonged time (1311 h) by ?-rays with energy of 1.25 MeV and a dose of 510 kGy. A qualitative comparison between XRD patterns acquired before and after irradiation revealed a progressive increase of compressive stress, especially in Nb layers, for smaller periodicities with a consequent increase in hardness measured by nanoindentation. The combination of smaller grain size and radiation-induced defect density distribution, primarily in Nb layers, was found to be responsible for the observed radiation hardening effect

    Using automatic robot programming for space telerobotics

    Get PDF
    The interpreter of a task level robot programming system called Handey is described. Handey is a system that can recognize, manipulate and assemble polyhedral parts when given only a specification of the goal. To perform an assembly, Handey makes use of a recognition module, a gross motion planner, a grasp planner, a local approach planner and is capable of planning part re-orientation. The possibility of including these modules in a telerobotics work-station is discussed

    On colouring point visibility graphs

    Full text link
    In this paper we show that it can be decided in polynomial time whether or not the visibility graph of a given point set is 4-colourable, and such a 4-colouring, if it exists, can also be constructed in polynomial time. We show that the problem of deciding whether the visibility graph of a point set is 5-colourable, is NP-complete. We give an example of a point visibility graph that has chromatic number 6 while its clique number is only 4

    Hierarchic interactive path planning in virtual reality

    Get PDF
    To save time and money while designing new products, industry needs tools to design, test and validate the product using virtual prototypes. These vir- tual prototypes must enable to test the product at all Product Life-cycle Management (PLM) stages. Many operations in PLM involve human manipulation of product com- ponents in cluttered environment (product assembly, disassembly or maintenance). Virtual Reality (VR) enables real operators to perform these tests with virtual proto- types. This work introduces a novel path planning architecture allowing collaboration between a VR user and an automatic path planning system. It is based on an origi- nal environment model including semantic, topological and geometric information, and an automatic path planning process split in two phases: coarse (semantic and topological information) and fine (semantic and geometric information) planning. The collaboration between VR user and automatic path planner is made of 3 main aspects. First, the VR user is guided along a pre-computed path through a haptic device whereas he VR user can go away from the proposed path to explore possible better ways. Second the authority of automatic planning system is balanced to let the user free to explore alternatives (geometric layer). Third the intents of VR user are predicted (on topological layer) to be integrated in the re-planning process. Exper- iments are provided to illustrate the multi-layer representation of the environment, the path planning process, the control sharing and the intent prediction

    Вимоги видавничого відділу ІМФЕ ім. М. Т. Рильського до оформлення авторами рукописів

    Get PDF
    Industrial parts are manufactured to tolerances as no production process is capable of delivering perfectly identical parts. It is unacceptable that a plan for a manipulation task that was determined on the basis of a CAD model of a part fails on some manufactured instance of that part, and therefore it is crucial that the admitted shape variations are systematically taken into account during the planning of the task. We study the problem of orienting a part with given admitted shape variations by means of pushing with a single frictionless jaw. We use a very general model for admitted shape variations that only requires that any valid instance must contain a given convex polygon PI while it must be contained in another convex polygon PE. The problem that we solve is to determine, for a given h, the sequence of h push actions that puts all valid instances of a part with given shape variation into the smallest possible interval of final orientations. The resulting algorithm runs in O(hn) time, where n=|PI|+|PE|

    Navigation of Distinct Euclidean Particles via Hierarchical Clustering

    Get PDF
    We present a centralized online (completely reactive) hybrid navigation algorithm for bringing a swarm of n perfectly sensed and actuated point particles in Euclidean d space (for arbitrary n and d) to an arbitrary goal configuration with the guarantee of no collisions along the way. Our construction entails a discrete abstraction of configurations using cluster hierarchies, and relies upon two prior recent constructions: (i) a family of hierarchy-preserving control policies and (ii) an abstract discrete dynamical system for navigating through the space of cluster hierarchies. Here, we relate the (combinatorial) topology of hierarchical clusters to the (continuous) topology of configurations by constructing “portals” — open sets of configurations supporting two adjacent hierarchies. The resulting online sequential composition of hierarchy-invariant swarming followed by discrete selection of a hierarchy “closer” to that of the destination along with its continuous instantiation via an appropriate portal configuration yields a computationally effective construction for the desired navigation policy
    corecore